

«Geology and Oil-gas Business» Institute named after K. Turyssov Department of «Chemical and Biochemical Engineering»

EDUCATIONAL PROGRAM 6B07216 «Technology of polymer production and processing»

Code and classification of the field of education: **6B07** «Engineering and manufacturing and construction industries»

Code and classification of training areas: **6B072** «Manufacturing and processing industries»

Group of educational programs: **B069** «Production of materials» (glass, paper, plastic, wood)

Level according to the NQF: 6 Level according to the IQF: 6 Duration of study: 4 years

Volume of loans: 240

Almaty 2025

The educational program 6B07216 «Technology of polymer production and processing» was approved at the meeting of the Scientific Council of KazNTU named after K.I.Satpayev

Protocol №10 from «06» 03 2025y

Reviewed and recommended for approval at a meeting of the Educational and Methodological Council of K.I.Satpayev KazNTU

Protocol №3 from «20» 12 2024y

The educational program 6B07216 «Technology of polymer production and processing» was developed by the academic committee in the direction 6B072 «Manufacturing and processing industries»

Name	Academic degree/ academic	Post	Place of work	
Chairman of the	Academic Comr	nittee:		
Mangazbaeva Rauash Amantaevna	Candidate of Chemical Sciences	Associate Professor	Kazakh National Research Technical University named after K.I.Satpayev	Show
Teaching staff:				
Kerimkulova Aigul Zhadyraevna	Candidate of Chemical Sciences	Associate Professor	Kazakh National Research Technical University named after K.I.Satpayev	they
Narmuratova Zhanar Bakhytovna	Doctor phD	Associate Professor	Kazakh National Research Technical University named after K.I.Satpayev	Hapuf
Employers				1
Omarova Marzhan Ernarovna	-	Director of "Dolce" LLP	Petro Gas Chemical Association,	lup
Students:			1	1
Usanchikova Alena Andreevna	•	Student	Kazakh National Research Technical University named after K.I.Satpayev	yes
Kassymbekova Yasmina Dodomuratovna	-	Student	Kazakh National Research Technical University named after K.I.Satpayev	Zarf:

Table of contents

	List of abbreviations and designations	4
1.	Description of educational program	5
2.	Purpose and objectives of educational program	5
3.	Requirements for the evaluation of educational program learning	5
	outcomes	
4.	Passport of educational program	5
1.1.	General information	6
1.2.	Relationship between the achievability of the formed learning	8
	outcomes according to educational program and academic	
	disciplines	
5.	Curriculum of educational program	27

List of abbreviations and designations

EP – Educational program

CC – Communicative competence

LO – Learning Outcomes

NJSC - Non-profit joint stock company

1. Description of the educational program

The educational program is a set of documents developed by the academic committee of the Kazakh National Research Technical University named after K.I. Satpayev. The EP takes into account the needs of the regional labor market, the requirements of government agencies and relevant industry requirements.

The production and processing of polymers is based on fossil organic raw materials: oil, natural gas and refinery gas. Using them as raw materials for organic synthesis will allow modern processes of polymer production and processing.

The formation of such a complex of technologically related industries will allow the production of high-tech and knowledge-intensive types of products, which, in turn, will cause accelerated development of other sectors of the real sector of the economy of the Republic of Kazakhstan.

The EP is based on the state educational standard for higher professional education in the relevant field.

The EP defines the program educational goals, the learning outcomes of students, the necessary conditions, content and technologies for the implementation of the educational process, assessment and analysis of the quality of students during training and after graduation.

The EP includes the curriculum, the content of disciplines, learning outcomes and other materials to ensure high-quality education of students.

2. The purpose and objectives of the educational program

Purpose of the educational program - Training competitive specialists with theoretical knowledge and professional competencies capable of solving production tasks, developing and implementing innovative, environmentally and socially responsible solutions in the field of polymer, elastomer, and paint and varnish production and processing technologies to contribute to sustainable development, ensure rational use of resources, and reduce environmental impact.

The task of the EP is focused on the implementation of the following principles: different directions are offered within the framework of the program. The direction is designed to provide specialization in a specific area of technology for the production and processing of polymers, elastomers and paint materials. Students have the opportunity to adapt their education by choosing one direction and

supplementing it with courses in other directions. You can also choose courses from any direction to create your own unique professional profile.

3.Requirements for the evaluation of learning outcomes of the educational program

The educational program was developed by the academic committee in accordance with the State Mandatory Standards of Higher and Postgraduate Education of the Republic of Kazakhstan dated July 20, 2022 No. 2 and reflects the learning outcomes on the basis of which curricula (working curricula, individual curricula of students) and working curricula in disciplines (syllabuses) are developed. Formed learning outcomes: applies knowledge of natural science, socioeconomic and profile disciplines of biotechnology to solve practical and professional tasks of the biotechnology industry.

Formed learning outcomes: applies knowledge of natural science, socioeconomic and profiling disciplines of technology to solve practical and professional problems of polymer production and processing technology.

Evaluation of learning outcomes is carried out according to the developed test tasks within the educational program in accordance with the requirements of the state mandatory standard of higher and postgraduate education.

When evaluating learning outcomes, uniform conditions and equal opportunities are created for students to demonstrate their knowledge, skills and abilities. To use modern information technologies for the collection, processing and dissemination of scientific information in the field of polymer production and processing technology.

4. Passport of the educational program

4.1. General information

№	Field name	Note
1	Code and	6B07 «Engineering and manufacturing and construction industries»
	classification of the	
	field of education	
2		6B072 «Manufacturing and processing industries»
	classification of	
	training areas	
3	Group of educational	B069 «Production of materials» (glass, paper, plastic, wood)
	programs	
4	Name of the	6B07216 «Technology of polymer production and processing»
	educational program	
5	Drief description of	The advantional program of this profile allows you to meeter
3		The educational program of this profile allows you to master
		competencies in technological and production areas, equipment,
		materials, methods and means of testing and quality control in the
		field of polymer production for various purposes, and the program is
		also focused on the processing of polymer products, design,
		commissioning, operation of technical devices.

6	The purpose of the EP	Training of competitive specialists with theoretical knowledge and
		professional competencies capable of solving production problems,
		conducting design and research activities in the field of technology for
		the production and processing of polymers, elastomers and paints.
7	Type of EP	New
	Level according to the	6
	NQF	
9	Level according to the	6
	IQF	
10	Distinctive features of	no
	the EP	
11	List of competencies	
	of the educational	- Fluent monolingual oral, written and communication skills
	program:	- The ability to use communicative communication in various
		situations
		KK 2. Basic literacy in natural science disciplines - basic
		understanding of the scientific picture of the world with an
		understanding of the essence of the basic laws of science
		KK3.General engineering competencies
		- basic general engineering skills and knowledge, the ability to solve
		general engineering tasks and problems
		KK4.Professional competencies
		- a wide range of theoretical and practical knowledge in the
		professional field;
		- the ability to carry out the technological process in accordance with
		the regulations and use technical means to measure the main
		parameters of the technological process, the composition and
		properties of raw materials and finished products;
		KK5. Engineering and computer competencies
		- basic skills of using computer programs and software systems to
		solve general engineering tasks
		KK6.Engineering and working competencies
		- skills and abilities of using technical means and experimental
		devices to solve general engineering tasks
		KK7. Socio-economic competencies
		- Critical understanding and cognitive ability to reason on
		contemporary social and economic issues
		KK8. Specially-professional competencies for the perception of information, setting goals and choosing ways to achieve it;
		— the ability to independently organize the work of performers, find
		and make management decisions in the field of labor organization and
		implementation of environmental measures;
		 knowledge of the principles of management, control and correction
		of activities in the context of teamwork, improving managerial and
		executive professionalism.
12	Learning outcomes of	PO1. Carry out technological processes for the production and
12		processing of polymers of various levels of complexity, operation of
		equipment and ensuring their safe functioning, analysing the
		production performance of the enterprise and the condition of oil
		products processing facilities with the issuance of recommendations
		to improve these data;
		PO2. Understanding the impact of engineering decisions in global,
		economic, environmental, and social contexts, demonstrating a
ш		conomic, environmental, and social contexts, demonstrating a

		responsible attitude towards sustainable development, adhering to ethical standards, analyzing trends of societal development, and navigating appropriately in diverse social situations.; PO3. Formation of the ability to independently and in practice apply new knowledge and skills with the help of information technologies,
		including in new areas of knowledge not directly related to the field of activity, process information using modern programs and databases
		to calculate technological parameters of tools used in the use of
		modern information technologies, obtaining polymers and monitoring the natural environment;
		PO4.Solve various typical practical tasks requiring independent
		analysis of working situations: control of the main technological process in the area of their professional activity of various levels of
		complexity;
		PO5. Formulate basic laws of natural science disciplines and methods
		of mathematical analysis and modelling when solving problems in the field of polymer production and processing technology and industry,
		ability to find solutions to general technical problems;
		PO6. Apply knowledge of modern trends in the development of the
		industry in production and technological, design, research and organizational and management activities
		PO7. Select and justify a rational technological scheme for the
		production of polymers, elastomers, paints and varnishes, taking into
1.2	T. C	account economic and environmental factors.
	Form of training	Full-time
	Duration of training Volume of loans	4 years 240
	Languages of	Kazakh, Russian, English
	instruction	Razakii, Russiaii, Eligiisii
17	Academic degree	Bachelor of Engineering and Technology in Engineering and
	awarded	Engineering
	Developer(s) and authors:	Mangazbayeva R.A.,Kerimkulova A.Zh,Narmuratova Z.B

4.2. The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines

No	Name of the	Brief description of the discipline	Numb	(Generat	ted lear	ning ou	itcome	s (codes	s)
	discipline		er of	PO	PO	PO	PO	PO	PO	PO
			credits	1	2	3	4	5	6	7
		Cycle of general education disci	iplines							
		Required component								
1	Foreign language	English is a discipline of the general education cycle. After determining the level (according to the results of diagnostic testing or IELTS results), students are divided into groups and	10	V						
		disciplines. The name of the discipline corresponds to the level of English proficiency.								
		During the transition from level to level, the prerequisites and post-prerequisites of discipline are observed.								
2	Kazakh (Russian) language	The socio-political, socio-cultural spheres of communication and functional styles of the modern Kazakh (Russian) language are considered. The course highlights the specifics of scientific style in order to develop and activate professional and communicative skills and abilities of students, allows students to practically master the basics of scientific style and develops the ability to perform structural and semantic analysis of the text.		v						
	Physical culture	The purpose of the discipline is to master the forms and methods of forming a healthy lifestyle within the framework of the professional education system. Familiarization with the natural-scientific basics of physical education, knowledge of modern health-improving technologies, basic methods of independent physical education and sports. As part of the course, the student will master the rules of judging in all sports.								
4	Information and communication technologies	Required component. The task of studying the discipline is to acquire theoretical knowledge about information processes, about new information technologies, local and global computer networks, methods of information protection; to acquire skills	5					V		

		in using text editors and tabular processors; to create databases						
		and various categories of application programs.						
5	Modern history of	The course studies historical events, phenomena, facts,	5		V			V
	Kazakhstan	processes that took place on the territory of Kazakhstan from						
		ancient times to the present day. The sections of the discipline						
		include: the steppe empire of the Turks; early feudal states on						
		the territory of Kazakhstan; Kazakhstan during the Mongol						
		conquest (XIII century), medieval states in the XIV-XV						
		centuries. The epoch of the Kazakh Khanate XV-XVIII						
		centuries. Kazakhstan as part of the Russian Empire,						
		Kazakhstan during the Great Patriotic War, during the						
		formation of independence and at the present stage.						
6	Philosophy	Philosophy forms and develops critical and creative thinking,	5					V
		worldview and culture, provides knowledge about the most						
		general and fundamental problems of existence and gives them						
		a methodology for solving various theoretical and practical						
		issues. Philosophy expands the horizon of vision of the modern						
		world, forms citizenship and patriotism, promotes self-esteem,						
		awareness of the value of human existence. It teaches how to						
		think and act correctly, develops practical and cognitive skills,						
		helps to search and find ways and means of living in harmony						
		with oneself, society, and the world around us.						
7	Module of socio-	The study of the course contributes to the formation of	3	V				
	μ	students' theoretical knowledge about society as an integral						
	(sociology, political	system, provides the political aspect of training a highly						
	science)	qualified specialist on the basis of modern world and domestic						
		political thought. The discipline is designed to improve the						
		quality of both general humanitarian and professional training						
		of students. Knowledge in the field of sociology and political						
		science is necessary to understand political processes, to form						
		a political culture, to develop a personal position and a clearer						
		understanding of the measure of one's responsibility.						
8	Module of socio-	The module of socio-political knowledge (cultural studies,	3		V			
		psychology) is designed to familiarize students with the						
	(cultural studies,	cultural achievements of mankind, to understand and						
	psychology)	assimilate the basic forms and universal patterns of formation						

		and development of culture. During the course of cultural studies, general problems of the theory of culture, leading cultural concepts, universal patterns and mechanisms of formation and development of culture, the main historical stages of the formation and development of Kazakh culture are considered. The regularities of the emergence, development and functioning of mental processes, states, properties of a person engaged in a particular activity, the regularities of the development and functioning of the psyche as a special form of vital activity are also studied.								
		Cycle of general education subje	ects	•		•			•	
		Selectable component	1	1			•	1		
9	Law basics	The purpose of the study: To attain knowledge in legal sphere in order to use them effectively in engineering activity; To make students know about efficient management of a work collective basing on legal mechanisms. Short content: the course allows students to get knowledge about specified directions of law, to organize information about subject and object of legal relations, about the main institutes and functions of legal directions. Expected results: After the course studying students should know, how to use legal norms in particular situations, how to make necessary documents and how to use special legal measures to restore broken rights.	5		v					
	Basics of Financial Literacy	Purpose: formation of financial literacy of students on the basis of building a direct link between the acquired knowledge and their practical application. Contents: using in practice all kinds of tools in the field of financial management, saving and increasing savings, competent budget planning, obtaining practical skills in calculating, paying taxes and correctly filling out tax reports, analyzing financial information, orienting in financial products to choose adequate investment strategies.		v					V	
	Fundamentals of economics and entrepreneurship	Purpose: To develop basic knowledge of economic processes and skills in entrepreneurial activities. Content: The course aims to develop skills in analyzing economic concepts such as supply and demand, and market equilibrium. It includes the	5		V				V	

		basics of creating and managing a business, developing								
		business plans, risk assessment, and strategic decision-making.								
		Cycle of basic disciplines								
10	h	University component		1	1	1	1	1		
12	Mathematics I	Purpose: to introduce students to the fundamental concepts of linear algebra, analytical geometry and mathematical analysis. To form the ability to solve typical and applied problems of the discipline. Contents_ Elements of linear algebra, vector algebra and analytical geometry. Introduction to the analysis. Differential calculus of a function of one variable. The study of functions using derivatives. Functions of several variables. Partial derivatives. The extremum of a function of two variables.	5	V				v	V	
13	Physics	Purpose:To form ideas about the modern physical picture of the world and scientific worldview, the ability to use knowledge of fundamental laws, theories of classical and modern physics. Contents_ physical fundamentals of mechanics, fundamentals of molecular physics and thermodynamics, electricity and magnetism, vibrations and waves, optics and fundamentals of quantum physics.	5					V		
14	Mathematics II	Purpose: To teach students integration methods. To teach you how to choose the right method for finding the primitive. To teach how to apply a certain integral to solve practical problems. Contents_ integral calculus of the function of one and two variables, series theory. Indefinite integrals, methods of their calculation. Certain integrals and applications of certain integrals. Improper integrals. Theory of numerical and functional series, Taylor and Maclaurin series, application of series to approximate calculations_	5				v	v	v	
15	Engineering and computer graphics	Purpose: To develop students' knowledge of drawing construction and skills in developing graphical and textual design documentation in accordance with standards. Content: Students will study ESKD standards, graphic primitives, geometric constructions, methods and properties of orthogonal projection, Monge's projection, axonometric projections, metric tasks, types and features of connections, creating part	5	V		v			V	

		sketches and assembly drawings, detailing, and creating complex 3D solid objects in AutoCAD.							
	Instrumental methods of analysis in polymer technology and processing	The purpose of studying the discipline: The formation of students' skills in the application of instrumental methods of polymer analysis, including those used in industry. Mastering the methods of technical analysis of polymer materials and products made from them. Methods of polymer research. Experimental standard methods: light, tunneling microscopy, AFM, SEM, TAM; IR, UV, fluorescence, RAMAN, NMR, EPR spectroscopy, calorimetry, DSC, TGA rheology, TMA, DMA	5	V	v		v		
	Introduction to specialty	The purpose of the discipline is to acquaint students who have started studying at the university with the basic and basic provisions of the specialty and training program; the development of interest in the chosen profession, the formation of students' competence and understanding of the chosen field of study, initial professional knowledge about the physicochemical fundamentals of organic matter technology; the formation of technological and environmental thinking among students. The basic initial concepts of chemical technology are considered: kinetic patterns of chemical transformations, types of reactors and equations of molar balances, technological indicators of processes, preparation of technological schemes of chemical processes.	4	V				v	
18	Chemistry	Purpose: formation of knowledge on fundamental issues of general chemistry and skills of their application in professional activity. Summary Laws, theoretical propositions and conclusions that underlie chemical disciplines; properties and relationships of chemical elements based on the periodic law of D.I.Mendeleev and on modern ideas about the structure of matter; fundamentals of chemical thermodynamics and kinetics; processes in solutions; structure of complex compounds.	5				V	V	
19	Organic Chemistry I	The purpose of the discipline is to master the complex of knowledge and scientific ideas about the fundamental theoretical and experimental foundations of organic chemistry	6	v		V		V	

	T	T						
		of aliphatic compounds; in obtaining students' knowledge of the basic concepts of theoretical organic chemistry, mastering the skills to characterize the structure, physico-chemical properties of organic substances, as well as modern methods of synthesis of organic substances. The course forms the basis of chemical reactions and methods of synthesis of organic compounds for the most important branches of the chemical and biochemical industry						
20	Organic Chemistry II	The aim of the course is to study the general patterns of organic reactions of cyclic compounds, such as cycloalkanes, aromatic hydrocarbons, and heterocyclic compounds. Each class of compounds is considered in terms of their chemical structure, isomerism and nomenclature, method of preparation, physical and chemical properties, and scope of their	5	v		V	v	
21		application. In the process of mastering this discipline, the student forms and demonstrates competencies that allow applying the acquired basic scientific and theoretical knowledge to solve scientific and practical problems. The purpose of the course: the formation of students' scientific		v		V		
	Physical and colloidal chemistry	thinking, in particular, the correct understanding of the limits of applicability of various physical and chemical concepts, laws, theories. The course deals with chemical thermodynamics, the first law of thermodynamics, thermal effects, Hess' Law, Kirchhoff's equations, the second law of thermodynamics. Entropy. chemical balance. The doctrine of solutions. Phase equilibria. Electrochemistry. electrolyte solutions. Galvanic elements. Chemical kinetics and catalysis. surface phenomena. dispersed systems. Methods for obtaining and cleaning.	5	· ·		•		
	Fundamentals of chemistry and technology of monomers	The course is designed to study the method of obtaining and basic technological schemes for the synthesis of specific monomers, for the production of polyolefins as lower olefins (ethylene, propylene, isobutylene), halogen-containing monomers, styrene, acrylic monomers, esters and esters used for the further synthesis of various polymers and polymer materials based on them. An example of large-capacity	5				v	V

		production of expanded polystyrene is given. The issues of							
		synthesis and production of polycondensation monomers for							
		the production of esters, polyamides, phenol-, carbamide- and							
		melamine-formaldehyde polymers, polyurethanes,							
		polycabonates are disclosed.							
23		The purpose of the discipline is for students to study modern		V		v	v		
		trends in the creation of theoretical foundations of technology							
		for processing oil, gas, coal, hydrocarbon raw materials,							
		monomers for the synthesis of polymers and synthetic rubbers,							
	Theoretical	synthetic detergents. The theoretical foundations of preparation							
	foundations of	and physical methods of separation of oil, gas, coal and							
	organic substances	products of their processing, various processes	5						
	technology	(thermodestructive, thermooxidative, catalytic) transformations							
	23	of combustible minerals and products of their processing are							
		considered, the theoretical foundations of polymer production,							
		which are one of the main directions of application of organic							
		substances, are touched upon.							
24		The purpose of studying the discipline is to develop the ability			v	v			
		to create effective and optimal technologies for various							
		chemical processes using the modeling computer program							
		CemKad. The issues considered in the course are the study of							
	CAD Chemical	the laws of hydromechanical and heat exchange processes							
	engineering I	occurring in various systems, and the development of various	5						
		calculation methods. The method of calculating chemical							
		technology devices using a modeling program. The course-							
		forms the student's ability to perform engineering and							
		technological calculations using a computer modeling							
		program, encourages the creation of various projects.							
25		The study of the course begins with the introduction of the		v		V		v	
		concept of polymers and polymeric materials. Technological							
		methods of carrying out polymerization processes of polymer							
		synthesis are revealed. Students get acquainted with the	5						
	production of	principles of creating polymer composite materials. Then they							
	polymers	study the production of specific polymerization monomers -							
		unsaturated aliphatic hydrocarbons, their halogen derivatives							
		and aromatic monomers. The characteristic of polyacrylate							

26		production is given. Plastic masses based on polymers obtained by polycondensation reaction are considered. Polymers based on phenol and aldehydes. Production of polyesters. Properties and application of polyesters. Polyethylene terephthalate. Polycarbonates. Study the regularities and mathematical description of the hydromechanical and heat exchange processes occurring in			v	v		v	
	Basic processes and apparatus of chemical technology I	systems with several phases and several components and to develop methods for calculating equipment, choosing a rational design and determining the size of the apparatus. Classification of the main processes and devices of chemical technology. The method of calculating the devices. Equations of equilibrium of an ideal fluid. Equations of motion of ideal fluids. Separation of heterogeneous systems. The main regularities of the flow of hydromechanical and heat exchange processes, designs and principles of operation of devices used in these processes.	5						
	Technology of polymer processing	The purpose of the course is to teach students the basic methods of polymer processing and the influence of physical and mechanical properties of polymers on the choice of processing method. The most important industrial methods of processing of thermoplastics and thermosetting plastics, such as extrusion, calendering, injection moulding, pressing, vacuum forming, stamping, etc. will be considered. In addition, the equipment used in these methods, parameters regulated during processing, types of defects in products, causes of their occurrence and methods of their elimination will be discussed.	5	V		V		V	
	Chemistry and physics of polymers	The purpose of the discipline is to study by students the main directions of modern development of chemistry and physics of polymers, their use and various sectors of the economy. General concepts and terminology in the field of polymers. Regularities of the chain and step mechanism of polymer synthesis. Chemical modification of polymers. Molecular and supramolecular structure of polymers. Deformation properties of polymers. Thermomechanical method of polymer research.	5				V	V	V

		<u></u>								
		Features of polymer dissolution. In the process of mastering this discipline, students develop knowledge on the classification and terminology of polymers.								
29	Basic processes and apparatus of chemical technology II	The purpose of the discipline is to study the regularities and mathematical description of mass transfer processes occurring in systems with several phases and several components and the formation of knowledge and skills in the field of processes and devices of chemical technology and practical calculations of processes and devices. Mass transfer processes, calculation and selection of devices and structures; comparative analysis of the operation of devices, finding optimal conditions for technological processes.	4	v		v			v	
30	CAD Chemical Engineering II	The purpose of the discipline is to study the modeling of chemical and technological processes using the AspenHysys modeling software package. The course studies the basic concepts of the modeling method, methods of constructing a technological scheme, characteristics of the technological scheme and flows, calculation of parameters of all flows and equipment. The course forms the ability to develop an optimal chemical process technology with a high-quality output of the	5	V					V	
	Educational practice	Passing an instruction on familiarization with the requirements of labor protection, safety, fire safety, and the rules of the internal labor regulations of the enterprise. Conducting a general tour of the enterprise, studying the structure. The stage of collecting, processing and analyzing technical or technological information on the technology being implemented.	2				Y	v		
		Cycle of basic disciplines							•	
22	1	Selectable component	ı			1			T	
32	Analytical chemistry and physico-chemical methods of analysis	The purpose of the course is to master the methods of analysis of organic substances and their application to solve problems in professional activity. The course discusses the principles and methods of determining the chemical composition of substances and their structure, including using physicochemical research methods. Application of analytical methods	5				V		V	

		for product quality control in various industries.								
33		Purpose: the goal is to form a holistic understanding of the	5		V					
		system of legal regulation of intellectual property, including								
		basic principles, mechanisms for protecting intellectual								
		property rights and features of their implementation. Content:								
		The discipline covers the basics of IP law, including copyright,								
		patents, trademarks, and industrial designs. Students learn how								
	intellectual	to protect and manage intellectual property rights, and consider								
	property	legal disputes and methods for resolving them.								
34		The purpose of the course: to study the general patterns of						V	V	
		chemical and technological processes (CTP) of the most								
		important chemical industries. The course examines the								
	General chemical	patterns of chemical transformations in industrial production								
	technology	conditions; basic chemical equipment. Calculation of technical	5							
	leennology	and economic indicators of the process, material and energy	3							
		balances. Industrial catalysis. Basic mathematical models of								
		chemical reactors. Methods of development of effective								
		chemical-technological processes and systems, methods of								
		energy and resource conservation, environmental protection.								
35		The course is designed to get acquainted with the general laws		V			V			
		of chemical technology, the most typical chemical-								
		technological processes, reactors and chemical-technological								
		systems. As a result, the course forms competencies that allow	5							
	General principles	carrying out the technological process in accordance with the								
	of chemical and	regulations and using technical means to control its main								
	technological	parameters of the technological process, the properties of raw								
2.6	processes	materials and products								
36		Purpose: the goal is for students to master the theoretical	5		V	V				
		foundations and practical skills in the field of sustainable								
		development and ESG, as well as to develop an understanding								
	Fundamentals of	of the role of these aspects in the modern economic and social								
	sustainable	development of Kazakhstan. Contents: introduces the								
		principles of sustainable development and the implementation								
	ESG projects in	of ESG practices in Kazakhstan, includes the study of national								
	Kazakhstan	and international standards, analysis of successful ESG								

		projects and strategies for their implementation in enterprises and organizations.							
37	Fundamentals of	Purpose: to familiarize students with the basic concepts,	5		V				
	Artificial	methods and technologies in the field of artificial intelligence:			•				
	Intelligence	machine learning, computer vision, natural language							
		processing, etc. Contents: general definition of artificial							
		intelligence, intelligent agents, information retrieval and state							
		space exploration, logical agents, architecture of artificial							
		intelligence systems, expert systems, observational learning,							
		statistical learning methods, probabilistic processing of							
		linguistic information, semantic models, natural language							
		processing systems.							
	Ecology and life	The discipline studies the main approaches to solving	5	v	V			v	
	safety	environmental problems; sources and types of environmental							
		pollution by transport enterprises; methods of reducing							
		harmful effects on the environment. Natural and man-made							
		emergencies, their causes, methods of prevention and							
		protection. Carrying out rescue and other urgent work, rules of							
39		behavior of people in emergency situations.	5						
39		Purpose of the course: It focuses on studying ESG (Environmental, Social, Governance) principles and their	3		V				
		interaction with the creation of an inclusive culture within an							
		organization. Content: Students will gain knowledge on how							
		implementing ESG principles contributes to corporate social							
		responsibility, sustainable development, and equal							
		opportunities for all employees, including those who may face							
		various forms of discrimination. The course will help students							
		understand the importance of an inclusive culture in achieving							
	ESG principles in	long-term business goals and ensuring sustainable							
	inclusive culture	organizational development.							
	Fundamentals of	Purpose: to form students' research skills, to develop interest in	5			v	v		
	scientific research	scientific activity. Content: based on the course study, students							
		will consider: - formation of practical skills in planning and							
		performing scientific research; - development of skills of							
		independent search, analysis and use of scientific information							
		using software and hardware; - mastering the concepts of							

		sustainable development and ESG principles, with an emphasis on their application in the oil and gas sector of Kazakhstan.							
41	Fundamentals of anti-corruption culture	The course introduces students to the improvement of socio- economic relations of the Kazakh society, the psychological characteristics of corrupt behavior. Special attention is paid to the formation of an anti-corruption culture, legal responsibility for acts of corruption in various fields. The purpose of studying the discipline "Fundamentals of anti-corruption culture and law" is to increase public and individual legal awareness and legal culture of students, as well as the formation of a knowledge system and a civic position on combating corruption as an antisocial phenomenon. Expected results: to realize the values of moral consciousness and follow moral norms in daily practice; to work on improving the level of moral and legal culture; to use spiritual and moral mechanisms to prevent corruption.	5		v	V	v		
42	Automation of control systems	Purpose: - to form the ability to develop, research and operate modern automated process control systems. As a result of training: understand the theory and practice of automated process control systems, learn the principles of building a technical base, mathematical and information support for automated process control systems, be able to apply the basic principles of preparing technological processes and industries for automation.	6	V		v		V	
43	Automation of control systems in chemical engineering processes	Automation of control systems in chemical and technological processes. The purpose of studying the discipline is to acquire the knowledge necessary for effective use in the development of modern automatic control systems. Possession of sections of containers necessary for solving research and applied tasks. The course "ASUHTP" provides a presentation of the sections of the basics of TAR, measuring elements, functional circuits. The study of this discipline will allow the student to acquire the skills to choose the types of switching devices and regulators depending on the law of regulation, to develop a functional and mathematical model of the control system, to analyze the operation of the system based on qualitative	6	V		V	v		

		indicators of regulation.						
	•	Cycle of profile disciplines					 	
		University component		_				
44	Elastomers technology	The purpose of studying the discipline is to study the processing of elastomers and the creation of elastomeric materials and products. Information will be considered on the structure and properties of rubbers used as the polymer base of elastomeric materials, on the ingredients, as a rule, included in the elastomeric material, on the main technological processes for obtaining elastomeric materials and products - mixing, calendering, molding, vulcanization, injection molding and others, as well as on the technical and special properties of elastomeric materials widely used in various branches of technology, and environmental problems of the elastomer processing industry.	4	V		V		V
45	Technology of organic and petrochemical production	The course examines the use of modern processes for obtaining organic products based on hydrocarbon raw materials: their specifics and technological features of the hardware design of the most important processes of the branch of basic organic and petrochemical synthesis and promising areas for their improvement, the assimilation of the principles of the organization of waste-free and low-waste production, as well as the directions of their improvement for the purpose of resource and energy conservation, increasing industrial and environmental efficiency. security. Basic knowledge and skills in the field of technological processes for obtaining organic and petrochemical synthesis products, as well as methods for optimizing production processes will be presented.	4	V		V		V
46	Fundamentals of enterprise design	The purpose of the discipline is to study the structures, the principle of operation of basic and special equipment for chemical production, familiarization with its main components and details. At the end of the course, the student must know the basic principles of design and development of a feasibility study of production; parameters and modes of operation of	5	v		V		V

		standard equipment; typical processes of chemical technology, corresponding devices and methods of their calculation; requirements for the technical condition of equipment; methods of technological calculations of individual components and parts of chemical equipment.						
	Equipment of	The purpose of studying the discipline is: students receive		V		,	v	v
	polymer production	professional training in the design of polymer production and						
	and processing	processing enterprises, study of standard equipment used for	6					
	enterprises	the production of polymers and their processing into products,	U					
		substantiation of methods of production of plastic products,						
		consumer goods.						
48		The purpose of the discipline is to form competencies that			v			
		allow for a complex of economic, organizational, engineering						
		and technical measures carried out in order to reduce the						
		volume of formation and storage of waste in the polymer						
		industry, as well as to obtain additional economic benefits	4					
	Recycling and	from the recycling of polymers. The methods of polymer						
	recycling of	recycling to minimize anthropogenic impact on the						
	polymer materials	environment, methods of their disposal, methods of analysis						
10	D 1	and control of waste and recycling products are considered.						
49	Production practice	The production practice I is of an introductory nature. During	2			,	V	V
	I	the internship, students will get acquainted with the work of						
		the production enterprise, they will observe the production						
	D 1 1	process.						
	Production practice		3			,	V	V
50	II	1. To ensure the formation of professional knowledge, skills						
		and abilities in the information and communication field.						
		2. To acquaint students with the methods of work and the						
		specifics of the activities of specialists in the production						
		process.						
		3. To demonstrate the relationship between theoretical courses						
		taught in the learning process and practical activities. 4. Consolidate students' knowledge						
-		Cycle of profile disciplines						
		Selectable component						
L		Selectable component						

	Polycondensation materials	The purpose of the discipline is for students to study the basic provisions of polymer synthesis by polycondensation. Methods for the production of synthetic polymers. Structure and classification of polycondensation polymers. The main types of polycondensation reactions, their conditions and mechanism. Monomers for polycondensation resins. Functionality of monomers. Cyclization as a competing reaction. Kinetics and MMR in polycondensation. Patterns of reversible and irreversible polycondensation. Methods of polycondensation. PC regularities in the melt, in solution, technological features. Emulsion polycondensation. Interphase polycondensation and its varieties.	5	V		V		v	
52	Production of hydrocarbon raw materials for the petrochemical industry	The purpose of studying the discipline: The formation of students' system knowledge on the theoretical foundations and technology of production of hydrocarbon raw materials for the petrochemical industry. In the course of studying the discipline, the student must: -know the chemistry and mechanism of thermal and catalytic transformations of oil and gas components; - to know the physico-chemical properties of hydrocarbons and other oil components and their influence on the properties of petroleum products, - to know the principles of constructing technological schemes and designing technological processes of the petrochemical industry.	5						
53	Reactivity of monomers in polymerization reactions	The course is designed to study the method of obtaining and basic technological schemes for the synthesis of a number of monomers for the production of synthetic rubbers. Examples of large-scale production of diene monomers and styrene are given. The issues of synthesis and production of polycondensation monomers for the production of esters, polyamides, phenol-, carbamide- and melamine-formaldehyde polymers, polyurethanes, polycabonates are disclosed.	6						v
54	Biopolymers and Biomaterials	The aim of the course is to study materials from proteins, DNA and carbohydrates to natural and synthetic materials designed to interact with biological systems for medical purposes. The course also studies the synthesis, assembly and functions of various biomolecules, information on how these molecules	5	V		Y	V		

		interact with other natural and synthetic materials, biocompatibility, polymer-based implants, biosensors, drug delivery, magnetic materials and medical devices.					
55	Gaschemistry	The purpose of the discipline is to form the competence of the student in the field of natural and associated gas processing technology. In the course of studying the discipline, the student must: - know the importance of natural gases in the economy and energy, the composition of hydrocarbon gases, their physical and chemical properties, the current state and prospects for the development of the gas processing industry in Kazakhstan and the world; -be able to assess the technical and economic efficiency of the technology and possess the skills to determine the technical characteristics of devices and equipment;	5	V			v
56	Chemical reactors	Fundamentals of the theory of chemical reactors. Classification of chemical reactors according to various criteria. Qualitative and quantitative criteria for evaluating the effectiveness of a chemical process in a reactor. Reactor of ideal (full) mixing and reactor of ideal (complete) displacement. Characteristic and design equations. Mathematical model of an ideal mixing reactor of periodic and continuous action. Mathematical model of a continuous-flow plug-flow reactor. Types of chemical reactor designs widely used in the technology of main production.	5	V			
57	Chemistry and technology of	The purpose of teaching the discipline is to form students' basic theoretical knowledge and practical skills in chemistry and technology of film–forming polymers and coatings. The features of safety, labor protection and environmental protection in the production of synthetic and processing of natural filmforming substances are considered. The acquired knowledge allows students to perceive the impact of engineering solutions in a global, economic, natural and social context;	5	v			V
58	Economic aspects of the technology of organic subsstances	The purpose of the discipline is to form a set of students' knowledge about the methods of conducting production processes, scientific thinking about understanding the logical connection between the chemical structure and reactivity of	5				v

		organic compounds, the processes of their processing, leading to a radical change in their properties. Creation of the basics of theoretical training for students to solve practical problems in the field of basic organic and petrochemical production.					
59	Technical analysis of polymers and polymer products	The purpose of the discipline: Formation of students' deep knowledge in the field of analysis of polymers and polymer products. Mastering the methods of technical analysis of polymer materials and products made of them. Acquisition of skills in the organization and management of technological process, conducting technological and calculation of chemical analyses; ability to work with regulatory and technical documents.	5	V	V		V
60	Monomer technology for synthetic rubber	The course is designed to study the method of obtaining and basic technological schemes for the synthesis of a number of monomers for the production of synthetic rubbers. Examples of large-scale production of diene monomers and styrene are given. The issues of synthesis and production of polycondensation monomers for the production of esters, polyamides, phenol-, carbamide- and melamine-formaldehyde polymers, polyurethanes, polycabonates are disclosed.	6	v	v		V
61	Physical and mechanical testing of plastics	The purpose of studying the discipline is to instill in students the skills of conducting physical and mechanical tests of plastics. Summary: Examines the physical and mechanical properties of plastics, standardization and certification of plastic testing methods, standard test methods, the relationship of loading conditions of polymers and products made of them with their mechanical behavior and mechanical properties. Methods of testing polymer materials. Mechanical tests. Strength, deformation and tensile modulus of elasticity.	5	V	V	V	
62	Physico-chemical methods of analysis	The course is designed to understand the principles of research and experimental work on modern analytical tools and practical use of the results and the data obtained. The purpose of the course is to teach students how to use FHMA to study the properties and composition of new organic materials and substances. Theoretical principles of methods, methods of computer processing of experimental results are described.	5	V	V		v

		Mass spectrometric methods. Electronic paramagnetic resonance (EPR) method. Nuclear magnetic resonance (NMR) method. Radiometric methods.						
63	Nanocomposites and nanomaterials	The goal is to form the ability to understand the main classes of nanomaterials and nanotechnologies used in the production and processing of polymers. As a result of training: to understand the main classes of nanopolymers and their properties; to understand the basic technologies for obtaining modern nanopolymer materials; to understand the tasks and technologies for obtaining nanopolymers and nanocomposites; to be able to use search engine methods, research methods in the field of technology for the production and processing of nanopolymers and nanocomposites.	5			Y	V	V
64	Fundamentals of obtaining composite materials	The purpose of the study is to give an in-depth understanding of the principles of creating polymer composite materials (PCM) with an improved complex of physico-chemical properties. Formation of students' ability to understand the physico-chemical essence of the processes of obtaining PCM and use the basic theoretical patterns in complex production and technological activities. Classification of composite materials according to materials science, structural, technological and operational principles. Mastering this course allows you to expand your understanding of the principles of creating composite materials based on thermo- and reactoplasts, the theoretical foundations for choosing plastics to create products for a specific purpose	5	V				v

5. Curriculum of the educational program

«APPROVED»

Decision of the Academic Council

NPJSC «KazNRTU

named after K.Satbayev»

dated 06.03.2025 Minutes № 10

WORKING CURRICULUM

 Academic year
 2025-2026 (Autumn, Spring)

 Group of educational programs
 B069 - "Production of materials (glass, paper, plastic, tree)"

 Educational program
 6B07216 - "Technology of the production and processing of polymers"

 The awarded academic degree
 Bachelor of engineering and technology

 Form and duration of study
 full time - 4 years

Allocation of face-to-face training based on courses																	
									Allo	cation (to-face and se			l on co	urses	
Discipline	Name of disciplines	Block	Cycle	Total ECTS	Total	lek/lab/pr Contact	in hours SIS (including	Form of	1 co	urse		urse		urse	4 co	urse	Prerequisites
code				credits	hours	hours	TSIS)	control	1	2	3	4	5	6	7	8	
									sem	sem	sem	sem	sem	sem	sem	sem	
		C	YCLE				DISCIPLINES	(GED)									
			GED,	M-1.	Module o	of language	training		_								
LNG108	Foreign language		RC	5	150	0/0/45	105	Е	5								
LNG104	Kazakh (russian) language		GED, RC	5	150	0/0/45	105	Е	5								
LNG108	Foreign language		GED, RC	5	150	0/0/45	105	E		5							
LNG104	Kazakh (russian) language		GED, RC	5	150	0/0/45	105	Е		5							
				M-2.	Module (of physical	training										
KFK101	Physical culture I		GED, RC	2	60	0/0/30	30	Е	2								
KFK102	Physical culture II		GED, RC	2	60	0/0/30	30	Е		2							
KFK103	Physical culture III		GED, RC	2	60	0/0/30	30	Е			2						
KFK104	Physical culture IV		GED, RC	2	60	0/0/30	30	Е				2					
				М-3. Мо	dule of i	nformation	technology										
CSE677	Information and communication technology		GED, RC	5	150	30/15/0	105	Е			5						
				M-4. Soci	io-cultur	al developn	nent module										
HUM137	History of Kazakhstan		GED, RC	5	150	15/0/30	105	GE		5							
HUM134	Module of socio-political knowledge (cultural studies, psychology)		GED, RC	5	150	30/0/15	105	Е			5						
HUM132	Philosophy		GED, RC	5	150	15/0/30	105	Е				5					
HUM120	Module of socio-political knowledge (sociology, political science)		GED, RC	3	90	15/0/15	60	Е				3					
	М	-5. Mo	dule on t	the basis	of anti-co	orruption c	ulture, ecology	and life sa	fety								
MNG489	Fundamentals of economics and entrepreneurship	1	GED, CCH	5	150	30/0/15	105	Е				5					
MNG564	Basics of Financial Literacy	1	GED, CCH	5	150	30/0/15	105	Е				5					
HUM159	Law basics	1	GED, CCH	5	150	30/0/15	105	Е				5					
				CYCLE	OF BASI	C DISCIP	LINES (BD)										
			M-6.	Module o	f physica	l and math	ematical train	ing									
MAT101	Mathematics I		BD, UC	5	150	15/0/30	105	Е	5								
PHY468	Physics		BD, UC	5	150	15/15/15	105	Е	5								
MAT102	Mathematics II		BD, UC	5	150	15/0/30	105	Е		5							MAT101
				M-7	. Module	of basic to	raining		_	_	_						
CHE692	Introduction to speciality		BD, UC	4	120	30/0/15	75	Е	4								

														_		
GEN429	Engineering and computer graphics		BD, UC	5	150	15/0/30	105	Е	5							
CHE495	Chemistry		BD, UC	5	150	15/30/0	105	Е		5						
AAP173	Practical training		BD, UC	2				R		2						
CHE665	Organic Chemistry I		BD, UC	6	180	30/15/15	120	Е			6					
CHE869	Physical and colloidal chemistry		BD, UC	5	150	15/15/15	105	Е			5					
HBI126	Analytical chemistry and physico-chemical methods of analysis	1	BD, CCH	5	150	15/15/15	105	Е			5					
MNG562	Legal regulation of intellectual property	1	BD, CCH	5	150	30/0/15	105	Е			5					
CHE639	Organic chemistry II		BD, UC	5	150	15/15/15	105	Е				5				
CHE649	Fundamentals of Chemistry and Monomer Technology		BD, UC	5	150	30/0/15	105	Е				5				
CHE570	General chemical technology	1	BD, CCH	5	150	30/15/0	105	Е				5				
CHE682	General principles of chemical and technological processes	1	BD, CCH	5	150	30/0/15	105	Е				5				
MNG563	Fundamentals of sustainable development and ESG projects in Kazakhstan	1	BD, CCH	5	150	30/0/15	105	Е				5				
CSE880	Fundamentals of Artificial Intelligence	1	BD, CCH	5	150	30/0/15	105	Е				5				
IDD427	Ecology and life safety	1	BD, CCH	5	150	30/0/15	105	Е				5				
CHE950	ESG principles in inclusive culture	1	BD, CCH	5	150	30/0/15	105	Е				5				
HUM158	The basics of anti-corruption culture	1	BD, CCH	5	150	30/0/15	105	Е				5				
PET525	Fundamentals of scientific research	1	BD, CCH	5	150	30/0/15	105	Е				5				
CHE637	Theoretical foundations of organic substances technology		BD, UC	5	150	30/0/15	105	E					5			
CHE652	Chemistry and Physics of Polymers		BD, UC	5	150	30/15/0	105	Е					5			
CHE816	Basic processes and apparatus of chemical technology I		BD, UC	5	150	30/0/15	105	E					5			
CHE695	CAD Chemical engineering I		BD, UC	5	150	0/15/30	105	E					5			
CHE818	Technology for the production of polymers		BD, UC	5	150	30/0/15	105	E					5			
HBI131	Instrumental methods of analysis in polymer technology and processing		BD, UC	5	150	15/15/15	105	Е					5			
CHE699	CAD Chemical Engineering II		BD, UC	5	150	0/15/30	105	E						5		
CHE817	Basic processes and apparatus of chemical technology II		BD, UC	4	120	30/0/15	75	E						4		
HBI138	Technology of polymer processing		BD, UC	5	150	30/0/15	105	Е						5		
AUT434	Automation of control systems in chemical engineering processes	1	BD, CCH	6	180	30/15/15	120	Е							6	
AUT435	Automation of control systems	1	BD, CCH	6	180	30/15/15	120	Е							6	
			C	YCLE O	F PROF	LE DISCH	PLINES (PD)									
				M-7	. Module	of basic tr	aining									
AAP102	Production practice I		PD, UC	2				R				2				
				M-8. N	Iodule of	profession	al activity									
HBI132	Elastomers technology		PD, UC	4	120	30/0/15	75	Е						4		
CHE560	Fundamentals of enterprise design		PD, UC	5	150	30/0/15	105	Е						5		
CHE680	Technology of organic and petrochemical production		PD, UC	4	120	30/0/15	90	E						4		
AAP183	Production practice II		PD, UC	3				R						3		
HBI133	Equipment for polymer production and processing enterprises		PD, UC	6	180	30/0/30	120	Е							6	
HBI139	Economic aspects of the technology of organic subsstances	1	PD, CCH	5	150	30/0/15	105	Е							5	
CHE874	Chemistry and technology of paints and varnishes and coatings	1	PD, CCH	5	150	30/0/15	105	Е							5	
CHE875	Technical analysis of polymers and polymer products	2	PD, CCH	5	150	30/0/15	105	Е							5	
CHE876	Physical and mechanical testing of plastics	2	PD, CCH	5	150	30/0/15	105	Е							5	
HBI128	Monomer technology for synthetic rubber	3	PD, CCH	6	180	30/0/30	120	Е							6	
HBI129	Reactivity of monomers in polymerization reactions	3	PD, CCH	6	180	30/0/30	120	Е							6	
HBI130	Chemical reactors	4	PD, CCH	5	150	30/0/15	105	Е							5	

	Military training	end on l	UNIVERS	ITV.					31	29	28	32	30	30	33	27	
	Military training																
AAP500																	
				Addit	ional typ	e of trainir	ng (ATT)										
ECA103	Final examination		FA	8												8	
	M-9. Final certification module																
CHE462	Production of hydrocarbon raw materials for the petrochemical industry	3	PD, CCH	5	150	30/0/15	105	Е								5	
CHE146	Gaschemistry	3	PD, CCH	5	150	30/0/15	105	Е								5	
CHE825	Nanocomposites and Nanomaterials	2	PD, CCH	5	150	30/0/15	105	E								5	
CHE823	Fundamentals of obtaining composite materials	2	PD, CCH	5	150	30/0/15	105	Е								5	
HBI136	Biopolymers and Biomaterials	1	PD, CCH	5	150	30/0/15	105	E								5	
HBI135	Polycondensation materials	1	PD, CCH	5	150	30/0/15	105	Е								5	
HBI134	Recycling and recycling of polymer materials		PD, UC	4	120	30/0/15	75	Е								4	
CHE893	Physico-chemical methods of analysis	4	PD, CCH	5	150	30/15/0	105	Е							5		

Number of credits for the entire period of study

Colored Note to		Credits									
Cycle code	Cycles of disciplines	Required component (RC)	University component (UC)	Component of choice (CCH)	Total						
GED	Cycle of general education disciplines	51	0	5	56						
BD	Cycle of basic disciplines	0	96	16	112						
PD	Cycle of profile disciplines	0	28	36	64						
	Total for theoretical training:	51	124	57	232						
FA	Final attestation				8						
	TOTAL:				240						

 $Decision \ of \ the \ Educational \ and \ Methodological \ Council \ of \ KazNRTU \ named \ after \ K. Satpayev. \ Minutes \ Ne \ 3 \ dated \ 20.12.2024$

Vice Provost on academic development Kalpeyeva Z. Б. Head of Department - Department of Educational Program Management and Academic-Methodological Work Director - Geology and Oil-gas Business Institute named after K. Turvssov Auyelkhan Y.	Vice Provost on academic development Kalpeyeva Z. B.	
Auvelkhan Y.	Management and Academic-Methodological Work Zhumagaliyeva A.	
Department Chair - Chemical and biochemical engineering Mangazbayeva R. A. Representative of the Academic Committee from Employers Acknowledged Seytenova G. Z.	K. Turyssov Auyelkhan Y. Department Chair - Chemical and biochemical engineering Mangazbayeva R. Representative of the Academic Committee from Employers Sevtenova G. Z.	A.